ar X iv : m at h - ph / 9 90 60 06 v 2 2 4 Ju l 1 99 9 Unitarily Equivalent Classes of First Order Differential Operators
نویسنده
چکیده
The class of non-homogeneous operators which are based on the same vector field, when viewed as acting on appropriate Hilbert spaces, are shown to be isomorphic to each other. The method is based on expressing a first order non-homogeneous differential operator as a product of a scalar function, a differential operator, and the reciprocal scalar function.
منابع مشابه
ar X iv : m at h / 06 06 33 9 v 1 [ m at h . SP ] 1 4 Ju n 20 06 Eigenfunction expansions associated with 1 d periodic differential operators of order 2 n
We prove an explicit formula for the spectral expansions in L(R) generated by selfadjoint differential operators (−1) d dx2n + n−1
متن کاملar X iv : m at h - ph / 9 90 10 11 v 2 2 9 Ju n 19 99 NON - COMMUTATIVE BLOCH THEORY : AN OVERVIEW
For differential operators which are invariant under the action of an abelian group Bloch theory is the tool of choice to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a noncommutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as b...
متن کاملar X iv : m at h - ph / 9 90 70 23 v 1 2 8 Ju l 1 99 9 EIGENFUNCTIONS , TRANSFER MATRICES , AND ABSOLUTELY CONTINUOUS SPECTRUM OF ONE - DIMENSIONAL SCHRÖDINGER OPERATORS
In this paper, we will primarily discuss one-dimensional discrete Schrödinger operators (hu)(n) = u(n + 1) + u(n − 1) + V (n)u(n) (1.1D) on ℓ 2 (Z) (and the half-line problem, h + , on ℓ 2 ({n ∈ Z | n > 0}) ≡ ℓ 2 (Z +)) with u(0) = 0 boundary conditions. We will also discuss the continuum analog (Hu)(x) = −u ′′ (x) + V (x)u(x) (1.1C) on L 2 (R) (and its half-line problem, H + , on L 2 (0, ∞) wi...
متن کاملar X iv : h ep - l at / 9 60 80 06 v 1 2 A ug 1 99
We study the order of the phase transition in the 3d U(1)+Higgs theory, which is the Ginzburg-Landau theory of superconductivity. We confirm that for small scalar self-coupling the transition is of first order. For large scalar self-coupling the transition ceases to be of first order, and a non-vanishing scalar mass suggests that the transition may even be of higher than second order.
متن کامل